Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
The following results are related to NEANIAS Space Research Community. Are you interested to view more results? Visit OpenAIRE - Explore.

  • NEANIAS Space Research Community
  • Swiss National Science Foundation

Relevance
arrow_drop_down
  • Authors: Diamond-Lowe, H.; Charbonneau, D.; Malik, M.; Kempton E.M.-R.; +1 Authors

    Atmospheric studies of spectroscopically accessible terrestrial exoplanets lay the groundwork for comparative planetology between these worlds and the solar system terrestrial planets. LHS3844b is a highly irradiated terrestrial exoplanet (R=1.303{+/-}0.022R{Earth}) orbiting a mid-M dwarf 15parsecs away. Work based on near-infrared Spitzer phase curves ruled out atmospheres with surface pressures >~10bars on this planet. We present 13 transit observations of LHS3844b taken with the Magellan Clay telescope and the LDSS3C multi-object spectrograph covering 620-1020nm. We analyze each of the 13 data sets individually using a Gaussian process regression, and present both white and spectroscopic light curves. In the combined white light curve we achieve an rms precision of 65ppm when binning to 10minutes. The mean white light-curve value of (Rp/Rs)^2^ is 0.4170{+/-}0.0046%. To construct the transmission spectrum, we split the white light curves into 20 spectrophotometric bands, each spanning 20nm, and compute the mean values of (Rp/Rs)^2^ in each band. We compare the transmission spectrum to two sets of atmospheric models. We disfavor a clear, solar composition atmosphere ({mu}=2.34) with surface pressures >~0.1bar to 5.2{sigma} confidence. We disfavor a clear, H2O steam atmosphere ({mu}=18) with surface pressures >~0.1bar to low confidence (2.9{sigma}). Our observed transmission spectrum favors a flat line. For solar composition atmospheres with surface pressures >~1bar we rule out clouds with cloud-top pressures of 0.1bar (5.3{sigma}), but we cannot address high-altitude clouds at lower pressures. Our results add further evidence that LHS3844b is devoid of an atmosphere.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Konstantopoulou, C.; De Cia, A.; Krogager, J.-K.; Ledoux, C.; +7 Authors

    Large fractions of metals are missing from the observable gas-phase in the interstellar medium (ISM) because they are incorporated into dust grains. This phenomenon is called dust depletion. It is important to study the depletion of metals into dust grains in the ISM to investigate the origin and evolution of metals and cosmic dust. We characterize the dust depletion of several metals from the Milky Way to distant galaxies. We collected measurements of ISM metal column densities from absorption-line spectroscopy in the literature, and in addition, we determined Ti and Ni column densities from a sample of 70 damped Lyman-{alpha} absorbers (DLAs) toward quasars that were observed at high spectral resolution with the Very Large Telescope (VLT) Ultraviolet and Visual Echelle Spectrograph (UVES). We used relative ISM abundances to estimate the dust depletion of 18 metals (C, P, O, Cl, Kr, S, Ge, Mg, Si, Cu, Co, Mn, Cr, Ni, Al, Ti, Zn, and Fe) for different environments (the Milky Way, the Magellanic Clouds, and DLAs toward quasars and towards gamma-ray bursts). We observed overall linear relations between the depletion of each metal and the overall strength of the dust depletion, which we traced with the observed [Zn/Fe]. The slope of these dust depletion sequences correlates with the condensation temperature of the various elements, that is, the more refractory elements show steeper depletion sequences. In the neutral ISM of the Magellanic Clouds, small deviations from linearity are observed as an overabundance of the {alpha}-elements Ti, Mg, S, and an underabundance of Mn, including for metal-rich systems. The Ti, Mg, and Mn deviations completely disappear when we assume that all systems in our sample of OB stars observed toward the Magellanic Clouds have an {alpha}-element enhancement and Mn underabundance, regardless of their metallicity. This may imply that the Magellanic Clouds have recently been enriched in {alpha}-elements, potentially through recent bursts of star formation. We also observe an S overabundance in all local galaxies, which is an effect of ionization due to the contribution of their HII regions to the measured SII column densities. The observed strong correlations of the depletion sequences of the metals all the way from low-metallicity quasi-stellar object DLAs to the Milky Way suggest that cosmic dust has a common origin, regardless of the star formation history, which, in contrast, varies significantly between these different galaxies. This supports the importance of grain growth in the ISM as a significant process of dust production. Cone search capability for table J/A+A/666/A12/tabled1 (*QSO-DLA column densities) Cone search capability for table J/A+A/666/A12/tabled2 (*Milky Way column densities) Cone search capability for table J/A+A/666/A12/tabled3 (*Milky Way column densities for elements with limited coverage)

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Drout M.R.; Massey P.; Meynet G.;

    Yellow and red supergiants are evolved massive stars whose numbers and locations on the Hertzsprung-Russell (H-R) diagram can provide a stringent test for models of massive star evolution. Previous studies have found large discrepancies between the relative number of yellow supergiants (YSGs) observed as a function of mass and those predicted by evolutionary models, while a disagreement between the predicted and observed locations of red supergiants (RSGs) on the H-R diagram was only recently resolved. Here, we extend these studies by examining the YSG and RSG populations of M33. Unfortunately, identifying these stars is difficult as this portion of the color-magnitude diagram is heavily contaminated by foreground dwarfs. We identify the RSGs through a combination of radial velocities and a two-color surface gravity discriminant, and after re-characterizing the rotation curve of M33 with our newly selected RSGs, we identify the YSGs through a combination of radial velocities and the strength of the OI{lambda}7774 triplet. We examine ~1300 spectra in total and identify 121 YSGs (a sample that is unbiased in luminosity above log(L/L_{sun}_)~4.8) and 189 RSGs. After placing these objects on the H-R diagram, we find that the latest generation of Geneva evolutionary tracks shows excellent agreement with the observed locations of our RSGs and YSGs, the observed relative number of YSGs with mass, and the observed RSG upper mass limit. Cone search capability for table J/ApJ/750/97/red (Radial velocitiers of red stars and derived properties) Cone search capability for table J/ApJ/750/97/yellow (Radial velocitiers of yellow stars and derived properties)

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Gillon M.; Deming D.; Demory B.-O.; Lovis C.; +8 Authors

    We used Spitzer and its IRAC camera to search for the transit of the super-Earth HD 40307b. The hypothesis that the planet transits could not be firmly discarded from our first photometric monitoring of a transit window because of the uncertainty coming from the modeling of the photometric baseline. To obtain a firm result, two more transit windows were observed and a global Bayesian analysis of the three IRAC time series and the HARPS radial velocities was performed. Unfortunately, the hypothesis that the planet transited during the observed phase window is firmly rejected, while the probability that the planet does transit but that the eclipse was missed by our observations is nearly negligible (0.26%)

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Al Moulla, K.; Dumusque, X.; Figueira, P.; Lo Curto, G.; +2 Authors

    Radial velocity (RV) measurements induced by the presence of planets around late-type stars are contaminated by stellar signals that are of the order of a few meters per second in amplitude, even for the quietest stars. Those signals are induced by acoustic oscillations, convective granulation patterns, active regions co-rotating with the stellar surface, and magnetic activity cycles. This study investigates the properties of all coherent stellar signals seen on the Sun on timescales up to its sidereal rotational period. By combining HARPS and HARPS-N solar data spanning several years, we are able to clearly resolve signals on timescales from minutes to several months. We use a Markov Chain Monte Carlo (MCMC) mixture model to determine the quality of the solar data based on the expected airmass- magnitude extinction law. We then fit the velocity power spectrum of the cleaned and heliocentric RVs with all known variability sources, to recreate the RV contribution of each component. After rejecting variations caused by poor weather conditions, we are able to improve the average intra- day root mean square (RMS) value by a factor of ~1.8. On sub-rotational timescales, we are able to fully recreate the observed RMS of the RV variations. In order to also include rotational components and their strong alias peaks introduced by nightly sampling gaps, the alias powers are accounted for by being redistributed to the central frequencies of the rotational harmonics. Conclusions. In order to enable a better understanding and mitigation of stellar activity sources, their respective impact on the total RV must be well-measured and characterized. We are able to recreate RV components up to rotational timescales, which can be further used to analyse the impact of each individual source of stellar signals on the detectability of exoplanets orbiting very quiet solar-type stars and test the observational strategies of RV surveys.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Planck Collaboration; Ade P.A.R.; Aghanim N.; Armitage-Caplan C.; +196 Authors

    We update the all-sky Planck catalogue of 1227 clusters and cluster candidates (PSZ1) published in March 2013, derived from detections of the Sunyaev-Zeldovich (SZ) effect using the first 15.5 months of Planck satellite observations. As an addendum, we deliver an updated version of the PSZ1 catalogue, reporting the further confirmation of 86 Planck-discovered clusters. In total, the PSZ1 now contains 947 confirmed clusters, of which 214 were confirmed as newly discovered clusters through follow-up observations undertaken by the Planck Collaboration. The updated PSZ1 contains redshifts for 913 systems, of which 736 (~80.6%) are spectroscopic, and associated mass estimates derived from the Yz mass proxy. We also provide a new SZ quality flag for the remaining 280 candidates. This flag was derived from a novel artificial neural-network classification of the SZ signal. Based on this assessment, the purity of the updated PSZ1 catalogue is estimated to be 94%. In this release, we provide the full updated catalogue and an additional readme file with further information on the Planck SZ detections. Cone search capability for table J/A+A/581/A14/psz1v2_1 (PSZ catalog, version 2.1, 10-02-2015)

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Szabo Gy.M.; Gandolfi D.; Brandeker A.; Csizmadia S.; +77 Authors

    AU Mic is a young planetary system with a resolved debris disc showing signs of planet formation and two transiting warm Neptunes near mean-motion resonances. Here we analyse three transits of AU Mic b observed with the CHaracterising ExOPlanet Satellite (CHEOPS), supplemented with sector 1 and 27 Transiting Exoplanet Survey Satellite (TESS) photometry, and the All-Sky Automated Survey from the ground. The refined orbital period of AU Mic b is 8.462995+/-0.000003d, whereas the stellar rotational period is P_rot_=4.8367+/-0.0006d. The two periods indicate a 7:4 spin-orbit commensurability at a precision of 0.1%. Therefore, all transits are observed in front of one of the four possible stellar central longitudes. This is strongly supported by the observation that the same complex star-spot pattern is seen in the second and third CHEOPS visits that were separated by four orbits (and seven stellar rotations). Using a bootstrap analysis we find that flares and star spots reduce the accuracy of transit parameters by up to 10% in the planet-to-star radius ratio and the accuracy on transit time by 3-4 min. Nevertheless, occulted stellar spot features independently confirm the presence of transit timing variations (TTVs) with an amplitude of at least 4 min. We find that the outer companion, AU Mic c, may cause the observed TTVs.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Szabo Gy.M.; Garai Z.; Brandeker A.; Gandolfi D.; +75 Authors

    Here we report large-amplitude transit timing variations (TTVs) for AU Microcopii b and c as detected in combined TESS (2018, 2020) and CHEOPS (2020, 2021) transit observations. AU Mic is a young planetary system with a debris disk and two transiting warm Neptunes. A TTV on the order of several minutes was previously reported for AU Mic b, which was suggested to be an outcome of mutual perturbations between the planets in the system. In 2021, we observed AU Mic b (five transits) and c (three transits) with the CHEOPS space telescope to follow-up the TTV of AU Mic b and possibly detect a TTV for AU Mic c. When analyzing TESS and CHEOPS 2020-2021 measurements together, we find that a prominent TTV emerges with a full span of >=23 minutes between the two TTV extrema. Assuming that the period change results from a periodic process - such as mutual perturbations - we demonstrate that the times of transits in the summer of 2022 are expected to be 30-85 minutes later than predicted by the available linear ephemeris.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Parviainen H.; Wilson T.G.; Lendl M.; Kitzmann D.; +77 Authors

    Recent studies based on photometry from the Transiting Exoplanet Survey Satellite (TESS) have suggested that the dayside of KELT-1b, a strongly irradiated brown dwarf, is significantly brighter in visible light than what would be expected based on Spitzer observations in the infrared. We observed eight eclipses of KELT-1b with CHaracterising ExOPlanet Satellite (CHEOPS) to measure its dayside brightness temperature in the bluest passband observed so far, and we jointly modelled the CHEOPS photometry with the existing optical and near-infrared photometry from TESS, LBT, CFHT, and Spitzer. Our modelling has led to a self-consistent dayside spectrum for KELT-1b covering the CHEOPS, TESS, H, Ks, and Spitzer IRAC 3.6 and 4.5um bands, where our TESS, H, Ks, and Spitzer band estimates largely agree with the previous studies. However, we discovered a strong discrepancy between the CHEOPS and TESS bands. The CHEOPS observations yield a higher photometric precision than the TESS observations, but they do not show a significant eclipse signal, while a deep eclipse is detected in the TESS band. The derived TESS geometric albedo of 0.36_-0.13_^+0.12^ is difficult to reconcile with a CHEOPS geometric albedo that is consistent with zero because the two passbands have considerable overlap. Variability in cloud cover caused by the transport of transient nightside clouds to the dayside could provide an explanation for reconciling the TESS and CHEOPS geometric albedos, but this hypothesis needs to be tested by future observations.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Letarte B.; Hill V.; Tolstoy E.; Jablonka P.; +12 Authors

    For the first time we show the detailed, late-stage, chemical evolution history of a small nearby dwarf spheroidal galaxy in the Local Group. We present the results of a high-resolution (R~20000, {lambda}=5340-5620; 6120-6701) FLAMES/GIRAFFE abundance study at ESO/VLT of 81 photometrically selected, red giant branch stars in the central 25' of the Fornax dwarf spheroidal galaxy. We also carried out a detailed comparison of the effects of recent developments in abundance analysis (e.g., spherical models vs. plane-parallel) and the automation that is required to efficiently deal with such large data sets. We present abundances of alpha-elements (Mg, Si, Ca, and Ti), iron-peak elements (Fe, Ni, and Cr), and heavy elements (Y, Ba, La, Nd, and Eu). Cone search capability for table J/A+A/523/A17/stars (Stars in Fornax dSph center: coordinates, photometric temperatures, radial velocities, and atmospheric parameters (tables A1, A2 and A3 of paper))

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
The following results are related to NEANIAS Space Research Community. Are you interested to view more results? Visit OpenAIRE - Explore.
  • Authors: Diamond-Lowe, H.; Charbonneau, D.; Malik, M.; Kempton E.M.-R.; +1 Authors

    Atmospheric studies of spectroscopically accessible terrestrial exoplanets lay the groundwork for comparative planetology between these worlds and the solar system terrestrial planets. LHS3844b is a highly irradiated terrestrial exoplanet (R=1.303{+/-}0.022R{Earth}) orbiting a mid-M dwarf 15parsecs away. Work based on near-infrared Spitzer phase curves ruled out atmospheres with surface pressures >~10bars on this planet. We present 13 transit observations of LHS3844b taken with the Magellan Clay telescope and the LDSS3C multi-object spectrograph covering 620-1020nm. We analyze each of the 13 data sets individually using a Gaussian process regression, and present both white and spectroscopic light curves. In the combined white light curve we achieve an rms precision of 65ppm when binning to 10minutes. The mean white light-curve value of (Rp/Rs)^2^ is 0.4170{+/-}0.0046%. To construct the transmission spectrum, we split the white light curves into 20 spectrophotometric bands, each spanning 20nm, and compute the mean values of (Rp/Rs)^2^ in each band. We compare the transmission spectrum to two sets of atmospheric models. We disfavor a clear, solar composition atmosphere ({mu}=2.34) with surface pressures >~0.1bar to 5.2{sigma} confidence. We disfavor a clear, H2O steam atmosphere ({mu}=18) with surface pressures >~0.1bar to low confidence (2.9{sigma}). Our observed transmission spectrum favors a flat line. For solar composition atmospheres with surface pressures >~1bar we rule out clouds with cloud-top pressures of 0.1bar (5.3{sigma}), but we cannot address high-altitude clouds at lower pressures. Our results add further evidence that LHS3844b is devoid of an atmosphere.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Konstantopoulou, C.; De Cia, A.; Krogager, J.-K.; Ledoux, C.; +7 Authors

    Large fractions of metals are missing from the observable gas-phase in the interstellar medium (ISM) because they are incorporated into dust grains. This phenomenon is called dust depletion. It is important to study the depletion of metals into dust grains in the ISM to investigate the origin and evolution of metals and cosmic dust. We characterize the dust depletion of several metals from the Milky Way to distant galaxies. We collected measurements of ISM metal column densities from absorption-line spectroscopy in the literature, and in addition, we determined Ti and Ni column densities from a sample of 70 damped Lyman-{alpha} absorbers (DLAs) toward quasars that were observed at high spectral resolution with the Very Large Telescope (VLT) Ultraviolet and Visual Echelle Spectrograph (UVES). We used relative ISM abundances to estimate the dust depletion of 18 metals (C, P, O, Cl, Kr, S, Ge, Mg, Si, Cu, Co, Mn, Cr, Ni, Al, Ti, Zn, and Fe) for different environments (the Milky Way, the Magellanic Clouds, and DLAs toward quasars and towards gamma-ray bursts). We observed overall linear relations between the depletion of each metal and the overall strength of the dust depletion, which we traced with the observed [Zn/Fe]. The slope of these dust depletion sequences correlates with the condensation temperature of the various elements, that is, the more refractory elements show steeper depletion sequences. In the neutral ISM of the Magellanic Clouds, small deviations from linearity are observed as an overabundance of the {alpha}-elements Ti, Mg, S, and an underabundance of Mn, including for metal-rich systems. The Ti, Mg, and Mn deviations completely disappear when we assume that all systems in our sample of OB stars observed toward the Magellanic Clouds have an {alpha}-element enhancement and Mn underabundance, regardless of their metallicity. This may imply that the Magellanic Clouds have recently been enriched in {alpha}-elements, potentially through recent bursts of star formation. We also observe an S overabundance in all local galaxies, which is an effect of ionization due to the contribution of their HII regions to the measured SII column densities. The observed strong correlations of the depletion sequences of the metals all the way from low-metallicity quasi-stellar object DLAs to the Milky Way suggest that cosmic dust has a common origin, regardless of the star formation history, which, in contrast, varies significantly between these different galaxies. This supports the importance of grain growth in the ISM as a significant process of dust production. Cone search capability for table J/A+A/666/A12/tabled1 (*QSO-DLA column densities) Cone search capability for table J/A+A/666/A12/tabled2 (*Milky Way column densities) Cone search capability for table J/A+A/666/A12/tabled3 (*Milky Way column densities for elements with limited coverage)

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Drout M.R.; Massey P.; Meynet G.;

    Yellow and red supergiants are evolved massive stars whose numbers and locations on the Hertzsprung-Russell (H-R) diagram can provide a stringent test for models of massive star evolution. Previous studies have found large discrepancies between the relative number of yellow supergiants (YSGs) observed as a function of mass and those predicted by evolutionary models, while a disagreement between the predicted and observed locations of red supergiants (RSGs) on the H-R diagram was only recently resolved. Here, we extend these studies by examining the YSG and RSG populations of M33. Unfortunately, identifying these stars is difficult as this portion of the color-magnitude diagram is heavily contaminated by foreground dwarfs. We identify the RSGs through a combination of radial velocities and a two-color surface gravity discriminant, and after re-characterizing the rotation curve of M33 with our newly selected RSGs, we identify the YSGs through a combination of radial velocities and the strength of the OI{lambda}7774 triplet. We examine ~1300 spectra in total and identify 121 YSGs (a sample that is unbiased in luminosity above log(L/L_{sun}_)~4.8) and 189 RSGs. After placing these objects on the H-R diagram, we find that the latest generation of Geneva evolutionary tracks shows excellent agreement with the observed locations of our RSGs and YSGs, the observed relative number of YSGs with mass, and the observed RSG upper mass limit. Cone search capability for table J/ApJ/750/97/red (Radial velocitiers of red stars and derived properties) Cone search capability for table J/ApJ/750/97/yellow (Radial velocitiers of yellow stars and derived properties)

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Gillon M.; Deming D.; Demory B.-O.; Lovis C.; +8 Authors

    We used Spitzer and its IRAC camera to search for the transit of the super-Earth HD 40307b. The hypothesis that the planet transits could not be firmly discarded from our first photometric monitoring of a transit window because of the uncertainty coming from the modeling of the photometric baseline. To obtain a firm result, two more transit windows were observed and a global Bayesian analysis of the three IRAC time series and the HARPS radial velocities was performed. Unfortunately, the hypothesis that the planet transited during the observed phase window is firmly rejected, while the probability that the planet does transit but that the eclipse was missed by our observations is nearly negligible (0.26%)

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Al Moulla, K.; Dumusque, X.; Figueira, P.; Lo Curto, G.; +2 Authors

    Radial velocity (RV) measurements induced by the presence of planets around late-type stars are contaminated by stellar signals that are of the order of a few meters per second in amplitude, even for the quietest stars. Those signals are induced by acoustic oscillations, convective granulation patterns, active regions co-rotating with the stellar surface, and magnetic activity cycles. This study investigates the properties of all coherent stellar signals seen on the Sun on timescales up to its sidereal rotational period. By combining HARPS and HARPS-N solar data spanning several years, we are able to clearly resolve signals on timescales from minutes to several months. We use a Markov Chain Monte Carlo (MCMC) mixture model to determine the quality of the solar data based on the expected airmass- magnitude extinction law. We then fit the velocity power spectrum of the cleaned and heliocentric RVs with all known variability sources, to recreate the RV contribution of each component. After rejecting variations caused by poor weather conditions, we are able to improve the average intra- day root mean square (RMS) value by a factor of ~1.8. On sub-rotational timescales, we are able to fully recreate the observed RMS of the RV variations. In order to also include rotational components and their strong alias peaks introduced by nightly sampling gaps, the alias powers are accounted for by being redistributed to the central frequencies of the rotational harmonics. Conclusions. In order to enable a better understanding and mitigation of stellar activity sources, their respective impact on the total RV must be well-measured and characterized. We are able to recreate RV components up to rotational timescales, which can be further used to analyse the impact of each individual source of stellar signals on the detectability of exoplanets orbiting very quiet solar-type stars and test the observational strategies of RV surveys.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Planck Collaboration; Ade P.A.R.; Aghanim N.; Armitage-Caplan C.; +196 Authors

    We update the all-sky Planck catalogue of 1227 clusters and cluster candidates (PSZ1) published in March 2013, derived from detections of the Sunyaev-Zeldovich (SZ) effect using the first 15.5 months of Planck satellite observations. As an addendum, we deliver an updated version of the PSZ1 catalogue, reporting the further confirmation of 86 Planck-discovered clusters. In total, the PSZ1 now contains 947 confirmed clusters, of which 214 were confirmed as newly discovered clusters through follow-up observations undertaken by the Planck Collaboration. The updated PSZ1 contains redshifts for 913 systems, of which 736 (~80.6%) are spectroscopic, and associated mass estimates derived from the Yz mass proxy. We also provide a new SZ quality flag for the remaining 280 candidates. This flag was derived from a novel artificial neural-network classification of the SZ signal. Based on this assessment, the purity of the updated PSZ1 catalogue is estimated to be 94%. In this release, we provide the full updated catalogue and an additional readme file with further information on the Planck SZ detections. Cone search capability for table J/A+A/581/A14/psz1v2_1 (PSZ catalog, version 2.1, 10-02-2015)

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Szabo Gy.M.; Gandolfi D.; Brandeker A.; Csizmadia S.; +77 Authors

    AU Mic is a young planetary system with a resolved debris disc showing signs of planet formation and two transiting warm Neptunes near mean-motion resonances. Here we analyse three transits of AU Mic b observed with the CHaracterising ExOPlanet Satellite (CHEOPS), supplemented with sector 1 and 27 Transiting Exoplanet Survey Satellite (TESS) photometry, and the All-Sky Automated Survey from the ground. The refined orbital period of AU Mic b is 8.462995+/-0.000003d, whereas the stellar rotational period is P_rot_=4.8367+/-0.0006d. The two periods indicate a 7:4 spin-orbit commensurability at a precision of 0.1%. Therefore, all transits are observed in front of one of the four possible stellar central longitudes. This is strongly supported by the observation that the same complex star-spot pattern is seen in the second and third CHEOPS visits that were separated by four orbits (and seven stellar rotations). Using a bootstrap analysis we find that flares and star spots reduce the accuracy of transit parameters by up to 10% in the planet-to-star radius ratio and the accuracy on transit time by 3-4 min. Nevertheless, occulted stellar spot features independently confirm the presence of transit timing variations (TTVs) with an amplitude of at least 4 min. We find that the outer companion, AU Mic c, may cause the observed TTVs.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Szabo Gy.M.; Garai Z.; Brandeker A.; Gandolfi D.; +75 Authors

    Here we report large-amplitude transit timing variations (TTVs) for AU Microcopii b and c as detected in combined TESS (2018, 2020) and CHEOPS (2020, 2021) transit observations. AU Mic is a young planetary system with a debris disk and two transiting warm Neptunes. A TTV on the order of several minutes was previously reported for AU Mic b, which was suggested to be an outcome of mutual perturbations between the planets in the system. In 2021, we observed AU Mic b (five transits) and c (three transits) with the CHEOPS space telescope to follow-up the TTV of AU Mic b and possibly detect a TTV for AU Mic c. When analyzing TESS and CHEOPS 2020-2021 measurements together, we find that a prominent TTV emerges with a full span of >=23 minutes between the two TTV extrema. Assuming that the period change results from a periodic process - such as mutual perturbations - we demonstrate that the times of transits in the summer of 2022 are expected to be 30-85 minutes later than predicted by the available linear ephemeris.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Parviainen H.; Wilson T.G.; Lendl M.; Kitzmann D.; +77 Authors

    Recent studies based on photometry from the Transiting Exoplanet Survey Satellite (TESS) have suggested that the dayside of KELT-1b, a strongly irradiated brown dwarf, is significantly brighter in visible light than what would be expected based on Spitzer observations in the infrared. We observed eight eclipses of KELT-1b with CHaracterising ExOPlanet Satellite (CHEOPS) to measure its dayside brightness temperature in the bluest passband observed so far, and we jointly modelled the CHEOPS photometry with the existing optical and near-infrared photometry from TESS, LBT, CFHT, and Spitzer. Our modelling has led to a self-consistent dayside spectrum for KELT-1b covering the CHEOPS, TESS, H, Ks, and Spitzer IRAC 3.6 and 4.5um bands, where our TESS, H, Ks, and Spitzer band estimates largely agree with the previous studies. However, we discovered a strong discrepancy between the CHEOPS and TESS bands. The CHEOPS observations yield a higher photometric precision than the TESS observations, but they do not show a significant eclipse signal, while a deep eclipse is detected in the TESS band. The derived TESS geometric albedo of 0.36_-0.13_^+0.12^ is difficult to reconcile with a CHEOPS geometric albedo that is consistent with zero because the two passbands have considerable overlap. Variability in cloud cover caused by the transport of transient nightside clouds to the dayside could provide an explanation for reconciling the TESS and CHEOPS geometric albedos, but this hypothesis needs to be tested by future observations.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Letarte B.; Hill V.; Tolstoy E.; Jablonka P.; +12 Authors

    For the first time we show the detailed, late-stage, chemical evolution history of a small nearby dwarf spheroidal galaxy in the Local Group. We present the results of a high-resolution (R~20000, {lambda}=5340-5620; 6120-6701) FLAMES/GIRAFFE abundance study at ESO/VLT of 81 photometrically selected, red giant branch stars in the central 25' of the Fornax dwarf spheroidal galaxy. We also carried out a detailed comparison of the effects of recent developments in abundance analysis (e.g., spherical models vs. plane-parallel) and the automation that is required to efficiently deal with such large data sets. We present abundances of alpha-elements (Mg, Si, Ca, and Ti), iron-peak elements (Fe, Ni, and Cr), and heavy elements (Y, Ba, La, Nd, and Eu). Cone search capability for table J/A+A/523/A17/stars (Stars in Fornax dSph center: coordinates, photometric temperatures, radial velocities, and atmospheric parameters (tables A1, A2 and A3 of paper))

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.